The Choptuik spacetime as an eigenvalue problem

نویسنده

  • Carsten Gundlach
چکیده

By fine-tuning generic Cauchy data, critical phenomena have recently been discovered in the black hole/no black hole “phase transition” of various gravitating systems. For the spherisymmetric real scalar field system, we find the “critical” spacetime separating the two phases by demanding discrete scale-invariance, analyticity, and an additional reflection-type symmetry. The resulting nonlinear hyperbolic boundary value problem, with the rescaling factor ∆ as the eigenvalue, is solved numerically by relaxation. We find ∆ = 3.4439± 0.0004.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analytic approximations to the spacetime of a critical gravitational collapse.

We present analytic expressions that approximate the behavior of the spacetime of a collapsing spherically symmetric scalar eld in the critical regime rst discovered by Choptuik. We nd that the critical region of spacetime can usefully be divided into a \quiescent" region and an \oscillatory" region, and a moving \transition edge" that separates the two regions. We nd that in each region the cr...

متن کامل

Some results on the symmetric doubly stochastic inverse eigenvalue problem

‎The symmetric doubly stochastic inverse eigenvalue problem (hereafter SDIEP) is to determine the necessary and sufficient conditions for an $n$-tuple $sigma=(1,lambda_{2},lambda_{3},ldots,lambda_{n})in mathbb{R}^{n}$ with $|lambda_{i}|leq 1,~i=1,2,ldots,n$‎, ‎to be the spectrum of an $ntimes n$ symmetric doubly stochastic matrix $A$‎. ‎If there exists an $ntimes n$ symmetric doubly stochastic ...

متن کامل

Choptuik scaling and the scale invariance of Einstein’s equation

The relationship of Choptuik scaling to the scale invariance of Einstein’s equation is explored. Ordinary dynamical systems often have limit cycles: periodic orbits that are the asymptotic limit of generic solutions. We show how to separate Einstein’s equation into the dynamics of the overall scale and the dynamics of the “scale invariant” part of the metric. Periodicity of the scale invariant ...

متن کامل

Evolution of the first eigenvalue of buckling problem on Riemannian manifold under Ricci flow

Among the eigenvalue problems of the Laplacian, the biharmonic operator eigenvalue problems are interesting projects because these problems root in physics and geometric analysis. The buckling problem is one of the most important problems in physics, and many studies have been done by the researchers about the solution and the estimate of its eigenvalue. In this paper, first, we obtain the evol...

متن کامل

Sturm-Liouville Fuzzy Problem with Fuzzy Eigenvalue Parameter

This study is on the fuzzy eigenvalues and fuzzy eigenfunctions of the Sturm-Liouville fuzzy problem with fuzzy eigenvalue parameter. We find fuzzy eigenvalues and fuzzy eigenfunctions of the problem under the approach of Hukuhara differentiability. We solve an example. We draw the graphics of eigenfunctions. We show that eigenfunctions are valid fuzzy functions or not.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1995